Wednesday, September 25, 2024

BinaryDs

 Express 0.679 as a binary decimal

To express the decimal 0.679 as a binary decimal, we can use the method of multiplying by 2 and extracting the integer part.


1. **Multiply by 2:**  

   \( 0.679 \times 2 = 1.358 \)  

   Integer part: **1**


2. **Take the fractional part (0.358) and multiply by 2:**  

   \( 0.358 \times 2 = 0.716 \)  

   Integer part: **0**


3. **Take the fractional part (0.716) and multiply by 2:**  

   \( 0.716 \times 2 = 1.432 \)  

   Integer part: **1**


4. **Take the fractional part (0.432) and multiply by 2:**  

   \( 0.432 \times 2 = 0.864 \)  

   Integer part: **0**


5. **Take the fractional part (0.864) and multiply by 2:**  

   \( 0.864 \times 2 = 1.728 \)  

   Integer part: **1**


6. **Take the fractional part (0.728) and multiply by 2:**  

   \( 0.728 \times 2 = 1.456 \)  

   Integer part: **1**


7. **Take the fractional part (0.456) and multiply by 2:**  

   \( 0.456 \times 2 = 0.912 \)  

   Integer part: **0**


8. **Take the fractional part (0.912) and multiply by 2:**  

   \( 0.912 \times 2 = 1.824 \)  

   Integer part: **1**


9. **Take the fractional part (0.824) and multiply by 2:**  

   \( 0.824 \times 2 = 1.648 \)  

   Integer part: **1**


10. **Take the fractional part (0.648) and multiply by 2:**  

   \( 0.648 \times 2 = 1.296 \)  

   Integer part: **1**


11. **Take the fractional part (0.296) and multiply by 2:**  

   \( 0.296 \times 2 = 0.592 \)  

   Integer part: **0**


12. **Finally, \( 0.592 \times 2 = 1.184 \)**  

   Integer part: **1**


Gathering the integer parts from each step gives us the binary representation:


**0.679 (decimal) ≈ 0.1010111101 (binary) rounding after 10 bits.**


In summary, the binary decimal approximation of 0.679 is approximately **0.1010111101**. 

No comments: