Friday, September 6, 2024

SpectralD

 Spent the day making sense of Spectral Decomposition, form Linear Algebra. It

comes down to taking a matrix, and finding the possible eigenvalues ie scaling, and 

eigenvectors...direction adjustments it will accomodate. Below, an example with

a simple matrix (from the Net) which I run through numpy code: finding my values, and

reconstituting the original matrix at the end:

                                                                        


Below, Gemini explaining the code:

                                                                                   





                                                                                


                                                                           


A diagonal matrix is one with (real0 numbers on the diagonal only. They are necessary

for speedy computation.

Next, I need to figure out why the decomposition on the hadamard gate looks like this:

                                                                                

From Meta:

A delightful quantum computing question! 馃ぉ

To perform spectral decomposition on the Hadamard gate matrix, we'll follow these steps:

Step 1: Write down the Hadamard gate matrix
The Hadamard gate matrix is:
H = 1/√2 * [[1, 1], [1, -1]]

Step 2: Find the eigenvalues and eigenvectors
To find the eigenvalues, solve the characteristic equation:
|H - 位I| = 0
where I is the identity matrix.
Solving for 位, we get two eigenvalues:
位1 = 1
位2 = -1

Next, find the corresponding eigenvectors:
v1 = [1/√2, 1/√2] (for 位1 = 1)
v2 = [1/√2, -1/√2] (for 位2 = -1)

Step 3: Normalize the eigenvectors
Normalize the eigenvectors to obtain:
蠄蟺/8= [1/√2, 1/√2]

Step 4: Write down the spectral decomposition
Now, write the Hadamard gate matrix as a linear combination of the outer products of the eigenvectors:
H = 位1 蠄蟺/8><蠄蟺/8 + 位2 蠄5蟺/8><蠄5蟺/8

Voil脿! You've successfully performed the spectral decomposition of the Hadamard gate matrix. 馃帀


                                                                  *     *     *



No comments: